Generation of neuronal progenitor cells and neurons from mouse sleeping beauty transposon-generated induced pluripotent stem cells.

نویسندگان

  • Nuttha Klincumhom
  • Melinda K Pirity
  • Sara Berzsenyi
  • Olga Ujhelly
  • Suchitra Muenthaisong
  • Sasitorn Rungarunlert
  • Theerawat Tharasanit
  • Mongkol Techakumphu
  • Andras Dinnyes
چکیده

Mouse embryonic stem cells (ESCs) and induced pluripotent stem (iPS) cells can be used as models of neuronal differentiation for the investigation of mammalian neurogenesis, pharmacological testing, and development of cell-based therapies. Recently, mouse iPS cell lines have been generated by Sleeping Beauty (SB) transposon-mediated transgenesis (SB-iPS). In this study, we determined for the first time the differentiation potential of mouse SB-iPS cells to form neuronal progenitor cells (NPCs) and neurons. Undifferentiated SB-iPS and ES cells were aggregated into embryoid bodies (EBs) and cultured in neuronal differentiation medium supplemented with 5 μM all-trans retinoic acid. Thereafter, EBs were dissociated and plated to observe further neuronal differentiation. Samples were fixed on days 10 and 14 for immunocytochemistry staining using the NPC markers Pax6 and Nestin and the neuron marker βIII-tubulin/Tuj1. Nestin-labeled cells were analyzed further by flow cytometry. Our results demonstrated that SB-iPS cells can generate NPCs and differentiate further into neurons in culture, although SB-iPS cells produced less nestin-positive cells than ESCs (6.12 ± 1.61 vs. 74.36 ± 1.65, respectively). In conclusion, the efficiency of generating SB-iPS cells-derived NPCs needs to be improved. However, given the considerable potential of SB-iPS cells for drug testing and as therapeutic models in neurological disorders, continuing investigation of their neuronal differentiation ability is required.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells.

Effective gene therapy requires robust delivery of the desired genes into the relevant target cells, long-term gene expression, and minimal risks of secondary effects. The development of efficient and safe nonviral vectors would greatly facilitate clinical gene therapy studies. However, nonviral gene transfer approaches typically result in only limited stable gene transfer efficiencies in most ...

متن کامل

Specification of Hemato-Endothelial-Like Structures and Generation of Hematopoietic Progenitor Cells from Human Pluripotent Stem Cells

 Background and purpose: Human pluripotent stem cells (hPSCs) with the ability to differentiate into adult cells have provided a new perspective for treatment of some diseases. But, the efficiency of differentiation methods to generate hematopoietic progenitor cells (HPCs) is faced with multiple challenges. In the present study, we investigated the formation of hemato-endothelial-like structure...

متن کامل

The Proliferation Study of hiPS Cell-Derived Neuronal Progenitors on Poly-Caprolactone Scaffold

Introduction: The native inability of nervous system to regenerate, encourage researchers to consider neural tissue engineering as a potential treatment for spinal cord injuries. Considering the suitable characteristics of induced pluripotent stem cells (iPSCs) for tissue regeneration applications, in this study we investigated the adhesion, viability and proliferation of neural progenitors (de...

متن کامل

Nonviral gene delivery with the sleeping beauty transposon system.

Effective gene therapy requires robust delivery of therapeutic genes into relevant target cells, long-term gene expression, and minimal risks of secondary effects. Nonviral gene transfer approaches typically result in only short-lived transgene expression in primary cells, because of the lack of nuclear maintenance of the vector over several rounds of cell division. The development of efficient...

متن کامل

I-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction

Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular reprogramming

دوره 14 5  شماره 

صفحات  -

تاریخ انتشار 2012